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VIBRATIONS OF A HOLLOW ELASTIC CYLINDER BONDED TO 

A THIN CASING OF A D1FFE"T MATERIAL 

By Vasant S. Kelkar" 

Ames Research Center 

SUMMARY 

Exact solutions are obtained to determine the natural frequencies and 
mode shapes of a thin cylindrical shell supported by a hollow core of a dif- 
ferent material. Materials for both shell and core are assumed to be homo- 
geneous, isotropic, and linearly elastic. A perfect bond is.assumed at the 
junction of the shell and the core. The composite cylinder is free from 
stresses at its curved boundaries and is supported by a diaphragm at its flat 
ends. The solutions for the core are based on three-dimensional elasticity 
theory and for the shell on bending theory. Curves are plotted to show the 
variation of the frequency with the variation in circumferential and axial 
wave nunibers and in the ratio of inner to outer radii of the core. 

INTRODUCTION 

Problems relating to vibrations of a thick cylinder bonded to a thin 
casing of a different material arise during the flight or transportation and 
handling of solid fuel rocket motors. It is therefore necessary to develop 
solutions which determine the natural frequencies and mode shapes of vibra- 
tions of such composite cylinders. Solid fuel tends to behave like a visco- 
elastic material; however, an analysis based on the assumption of an elastic 
core provides useful results. 

Solutions for some particular cases have been obtained before as cited 
below; however, a completely general solution of the problem using three- 
dimensional elasticity theory for the core and bending theory for the shell 
is difficult to obtain analytically and has not yet been developed. Such a 
general solution, useful in its own right, could also be used to check the 
solutions of approximate methods, such as the finite element method, which 
could then be used to solve problems of more complicated core geometries. Chu 
(ref. 1) gave frequency equations for simple axisymnetric axial shear and 
radial vibrations of composite cylinders, while Achenbach (ref. 2) obtained 
solutions for torsional oscillations. These solutions are relatively simple 
since they involve only one displacement component. Problems involving two of 
the displacement components were also solved; Baltrukonis, Chi, and Gottenberg 
(ref. 3) and Sann and Shaffer (ref. 4) obtained frequency equations for plane 
strain vibrations. Neither study considers displacement variations in the 
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axial direction which complicate the problem somewhat. Henry and Freudenthal 
(ref. 5) presented solutions for vibrations of a thin shell with a visco- 
elastic core of nonablating boundary. Their solutions are for axisymmetric 
deformations and are based on the use of the correspondence principle. 

For the present analysis, we shall consider a composite circular cylinder 
of length 2 composed of a thin elastic shell supported by a hollow elastic 
core of a different material (fig. 1). Materials for both shell and core are 
assumed to be homogeneous, isotropic, and linearly elastic, and to be per- 
fectly bonded at their junction. The curved surfaces of the composite cylin- 
der are assumed to be free from stresses. The flat ends of the cylinder are 
assumed to be supported by a diaphragm which prevents displacements in its own 
plane. The solutions presented are completely general and are based on a 
three-dimensional elasticity solution for the core and on bending theory solu- 
tion for the shell. In the analysis which follows, the core and the shell are 
first considered separately. To solve the problem of the composite cylinder, 
equilibrium and compatibility conditions are then satisfied at the junction of 
the shell and the core. The coefficient determinant of the resulting six 
homogeneous equations yields the frequency equation from which numerical val- 
ues of the natural frequency are calculated and plotted against variations in 
axial and circumferential wave numbers for different values of the core thick- 
ness ratio. Frequencies of a composite cylinder with an extremely thin shell 
are compared with those given by Gazis (ref. 6) for a thick cylinder and are 
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to be in good agreement. 

SYMBOLS 

radius of the middle surface of the shell 

inside radius of the core 

E-a 

1 - vs2 
elastic constants for the core material 

elastic constants for the shell material 



-@ and -k12, respectively, when k2 and k12 are less than E2 E 2 
Y 1  

zero 

t2 
12 a2 

2 length of cylinder 

m circumferential wave number 

n axial wave number 

P frequency of vibration 

P ,P tPr components of applied loading per unit area of shell’s middle 
x c p  surface in the x, (p, and r directions 

r,cp,x cylindrical coordinates 

t thickness of the shell 

UIVYW displacements of a point on the middle surface of the shell in 
the x,cp,r directions, respectively 

UC’ VCYWC displacements, respectively, in the axial circumferential and 
radial directions of a point x,(p,r in the core 

- - -  
uc Y vc Y wc displacements of a point on the outer curved surface of the 

core 

amplitudes of displacements u,v,w, respectively 

solutions determining the radial variation of stresses 
umn~vmnJwmn 

ai j ( r )  

6. . ( r )  

-rrX, 
T and cry 

rcp’ 
solutions determining the radial variation of uc,vc, and wc 1 J  

EX Y > Er 1 strains at a point in the core 

EL% for a cylinder of length 2 
2 

A 
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(1 - 2vc)(l 1- v c )  - -  P, 

1 - v c  EC 
P2 

mass dens i ty  of the mater ia l  of the core p, 
L 

PS 
mass dens i ty  of the s h e l l  m t e r i a l  

s t r e s s e s  a t  a point  i n  the core (5 xjUqjar 

s t r e s s e s  a t  a point  on the outer  curve- surface of the c - - -  
I- rx'I-1.rp"r 

ANALYSIS OF THE CORE 

re 

The core i s  a hollow c i r cu la r  cylinder for which the  governing equations 
f o r  the deformation a r e  ( r e f .  7 ) :  

Equations of motion ~- 

Kinematic r e l a t i o n s  ~ -_ 
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Hooke's law 

where 

Substituting equations ( 2 )  into (3) and then introducing the resulting 
expressions for stresses into equations (l), we get three partial differential 
equations in uc, vc, we, and e. 

where is the three-dimensional Laplacian operator 

- a2 
ar' 

The following operations on these equations 

give 
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o2e = p 2& 
a t2 

where 

We seek a solut ion of equation (5)  which i s  per iodic  i n  cp with a 
period 2 ~ (  and per iodic  i n  x with a period 2.rra/A: 

( 6 4  AX i p t  
a 

e = E ( r ) s i n  - cos m cpe 

where a i s  a constant which we s h a l l  l a t e r  take as the radius of the middle 
surface of the s h e l l .  This gives 

where 

d2E - dr2 + - -  1 r dE d r  + (e -$)E=O 

The solut ions of t h i s  equation a r e  

E ( r )  = -(1 - 2vC)a(clP, + c a m )  

where c1 and c4 a r e  a r b i t r a r y  constants and where 

(1) f o r  k2 - > 0, t h a t  i s ,  p2 - > (1/p2)(A2/a2) 

and 

= Y m ( h )  

where 
re spec t ive ly .  

Jm and Ym a r e  Bessel functions of the f irst  and second kind, 

( 2 )  f o r  < - 0, t h a t  is, p' - < (1/p2)(A2/a2) 

( 7 )  
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and 
- 

Q = Q(&) , k2 = -k2 

where 
respectively. 

1, and & are modified Bessel functions of the first and second kind, 

Taking 

uc = f(r)cos - ?a cos mcpeipt 
a 

we get from equation (48) 

1 A  
dr2 r dr 1 - 2vc a 
- d2f + 1 df + (k12 - 5) f = - - E  

where 

The solutions of the homogeneous part of equation (9 )  are 

f(r) = c2% + c5sm 

where c2 and c5 are arbitrary constants and where 

1 - 2vc 

- 2 ( 1  - V C )  CL 
(1) for k12 > 0, that is, p2 > LE 

a2 - 

and 

1 - 2vc 1 A2 

2 ( 1  - v c )  CL 
-- 

a2 ( 2 )  for k12 < 0, that is, p2 - 

and 

7 



When k12 > 0, k? may be negative or not; hence, to the homogeneous 
solutions of equation (9), we can add two different sets of particular solu- 
tions. When k12 < 0, k? must be less than zero; hence, only one particular 
solution can be added to the homogeneous solutions. 
solutions thus arising can be divided into three cases as follows: 

All the different 

Case I. k12 > k2 - > 0, that is, p2/po2 - > A2 > A 2 ( 1  - 2vc)/2(1 - vc) 

Case 111. 0 - > k12 > k?, that is, p2/po2 - < A2(1  - 2vc)/2(1 - vc) < A2 

where 

Having obtained solutions for e and uc for each of these cases, we can 
solve for the displacements vc and wc from equations (4b) and (4c). This 
procedure has been illustrated for case I in the appendix. O n l y  the solutions 
for the displacements obtained in the three cases are listed here: 

For a cylinder of length 2 ,  A = ma/2 (n = 0, 1, . . ., w ) .  
wc, and ox as zero at the ends x = 0 and x = 2 corresponding to a diaphragm 
support. For each f, g, and h, three of the six linearly independent 
solutions are regular and three singular at 

This gives vc, 

r = 0. 

or 0 

Qm o r  J A 1  d 
a k12 dr 

- - - -  d 
dr pm ’ h(r) = a - 
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Singular solutions 

or 0 f(r) = A R ,  9 Sm 

g(r) = - E a% , snl 
d or -a - 

Sm dr r a k12 r 
- A l _ m  - 

- - - -  A 1  d or a $ S, R , J  a k12 dr sm h(r) = a d 
dr 

(1-3) 

where 
the various cases. 

Pmy &m, R,, and Sm are replaced by the following Bessel functions for 

These solutions are the same as those obtained by Gazis (ref. 6) by-using 
scalar and vector potentials. It may be noted that the quantities kr, kr, 
klr, and xir are dimensionless, so also are the displacement solutions (ll), 
(12), and (13). 
31 and (13) by sij(r) [i = 1, 2, 3 y  j = 4, 5, 6 j .  Then the general solution 
for displacements can be written: 

We denote solutions (12) by 6i.(r) [i = 1, 2, 3, j = 1, 2, 

6 

ipt Ax cos m cpe a 
j=i 

Ax ipt (r)c. sin - sin m cpe J a 
j=1 

6 

ipt 
a 

j=i 

where c1, . . .,c6 are unknown constants. Corresponding expressions for 
the stresses -rrX, -rrcpJ and or in the core can be expressed as: 
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where 

6 

AX ip t (r)cj sin - cos mcpe 
3j  a 

o r = u ” > ,  a2 a 

j=i  

The factors aij(r) can be calculated for the three cases by substituting 
equations (12) and (1.3) into equations (2) and (3). The constants 
C’, . .,c6 can then be determined from stresses and displacements prescribed 
at the inner and outer curved surfaces at the core. This step completes the 
analysis of the core. A few special cases are of interest. 

When m = 0, we get four linearly independent solutions for each f and 
from (12) and (13) corresponding to the axisymetric deformation problem, h 

while the two nontrivial solutions obtained for g are for a problem with 
torsional symmetry.’ 

When A = 0, both k2 and k12 are non-negative. Hence, only case I is 
From solutions (12) and (l3), we get four linearly independent solu- valid. 

tions for g and h1 for the resulting plane strain problem. The two lin- 
early independent solutions for f correspond to pure axial shear vibrations. 

EQUATIONS FOR THE SHELL 

The shell has a midsurface radius a and thickness t which is 
considered to be small compared to a. Using bending theory with Donnell’s 
simplifications and neglecting the effect of rotatory inertia, the following 
equations of motion of the shell can be written in terms of its midsurface 
displacements u, v, and w (refs. 8, 9, and 10). 

- _ _  - - 

’It is understood that relevant sines and cosines are interchanged in 
solutions (14) by a simple coordinate transformation. 
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a2 - 1 - vs .. 1 + vs 
2 u +  2 v"+ vsw'  + P x D , -  ut' + 

U t .  + V'* + - vs + w' a2 = 1 + v s  
2 2 + pCp 

a2t 
-Ps - - a' - .. 

vSut + V' + w + ks(wiv + 2w"" + w") - pr - - 
DS Ds at' 

where 

and 
( ) ' = -  d( 1 

dCp 

and px, pT, pr 
s h e l l .  

a r e  loads ac t ing  per u n i t  area of the middle surface of the 

ANALYSIS OF THE COMPOSITE CYLINDER 

We have a s h e l l  of midsurface radius  a supported on a core of radius  
a ( 1  - t /2a)  which we denote by 
a t  the junction of s h e l l  and core. A l s o ,  f o r  no s l i p ,  the displacements of 
the s h e l l  and the core must be compatible a t  t h e i r  junction. Displacements 
and s t r e s s e s  a t  the outer  surface r = ae of the core are:  

ae. We s h a l l  s a t i s f y  equilibrium conditions 

j= i  

- 2 s 2 j ( a e ) c  s i n  ~x s i n  m cpe v = vc(x,cp,ae) = 
j a C 

j= i  I 
6 . ( a e ) c j  s i n  - Ax cos m cpe f =J  a 

- 
w = wc(x,p,ae) = 

C 
j=i  J 

11 
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- - -  
Displacements 
on the inner surface of the shell. These displacements are related to the 
midsurface displacements 

uc, vc, we must be the same as those of a corresponding point 

of the shell as follows (ref. 10) U, v, w 
L 1 

i t -  - 
v C = 0 v + - w  2a 

- w = w  
c 

We write solutions for u, v, w in the form: 
1 

w = w sin Ax cos m cpe ipt J mn a 

wherein we may take 
tions at the ends of a cylinder of finite length 2 .  Substituting 
equations (20) and (1.7) into (19) we can express 

A = ma/2 in order to satisfy diaphragm support condi- 

k, vm, wmn as 

12 



j=i j=i I 
6 .(ae)cj 

3J 
W mn 

j=i 

To satisfy equilibrium at the junction of the shell and the core, consider - - the shell to be acted upon on its inner surface by loads 
The moments caused by these forces about axes through the midsurface of the 
shell will be neglected since they will be of rather small magnitude. Hence, 
in equations (16) p , p , pr 
-or, respectively. ?Morgover, since in the derivation of equations (16) quan- 
tities of the order 
(ref. 10). When equations (21), (20), and (18) are substituted into equa- 
tions (16), the following three equations result for the constants 

-‘-irx, - T ~ ~ ,  and -or. 

- can be directly replaced by -TrX, -Tr(p, and - 
t/2a have been neglected compared to 1, we take 8 .. 1 

- c6:  

j=i 



j=i 

+ [l + ks(A4 + 2h23 + m4) - ps e p2] 6, + - aSj } c j  = 0 

DS Ds 

where sij = Eij(a) and aij = aij(a). We prescribe zero stresses at the 
inner surface r = b of the core. This gives us three additional equations 
for the constants CL,. . .,c6 as follows: 

j=i  

6 
F 

agj(b)cj = 0 L 
j= i  

6 
7 L a3j(b)cj = 0 

j = i  

Equations (22) together form six homogeneous equations for the six 
constants el,. . .,e6. They will have a nontrivial solution only if the 
determinant of their coefficients is zero. This gives us the frequency equa- 
tion - a transcendental equation for p, the roots of which can be calculated. 
For each frequency p we can calculate from equations (22) the ratios cZ/c1, 
c3/c1,. . ., c6/c1. The mode shapes are then obtained from equations (14), 
(20), and (21). 
curved surfaces of the composite cylinder are different from those considered 
here can also be solved in an analogous manner. 

Problems wherein boundary conditions at the inner and outer 

NUMERICAL RESULTS 

The results of OUT analysis are illustrated by numerical values of the 
frequency calculated for case I which covers a wider range of frequency spec- 
trum than case I1 or 111. Numerical values of frequency in these cases can 
be calculated in a similar manner. In case I the dimensionless factors 
aij(r) have the following form: 

14 



all(r) = 2 mAJm(kr) - 2kaAJml(kr) r 

c ~ ~ ~ ( r )  = - 2 ( 3  - m) - a2 Jm(klr) + k12a2Jm(klr) - 

a31(r) = 2 ( 3  - m) e Jm(kr) + 2k a2 Jml(kr) + 

r2 

r2 r 

2A 
as2(r) = -2 (& - m ) A  Jm(klr) - - Jml(klr) + k12r2 klr 

(A2 - k12a2)J,(kr 

2AJ,( klr) 

( klr ) r2 r Jmtl 
a2 mkla2 a33(r) = 2 ( 3  - m) - Jm(klr) - 2 - 

The remaining 
by Ym and J,, by Yml in equations (23). 

aij (i = 1, 2, 3, j = 4, 5, 6) are obtained by replacing J, 

The frequency equation obtained by equating to zero the coefficient 
determinant of equations (22) was expressed in terms of the dimensionless 
quantity ka. Numerical work was carried out on an IBM 7094 computer. Values 
of vc and vs were fixed at 0.45 and 0.30, respectively. A relatively weak 
core was considered by taking Ec/Es = and pc/ps = 0.25. The radius to 
thickness ratio (a/t) of the shell was taken to be 1000. For various values 
of A, m, and a/b, roots ka of the frequency equation were obtained by plot- 
ting the value of the determinant against ka. From the definition of k a 
dimensionless frequency ratio p/po is then given by the relation 

( p/po)2 = k2a2 + A2 (24) 

where 

Po = 1/pa 

In all calculations, the range of values of p/po considered was such 
that it satisfied the condition 
results are shown in figures 2 to 6. 

p/po 2 A ( o r  $a2 - > 0) for case I. The 



For purposes of comparison, numerical values of frequency were a l s o  
obtained f o r  some cases considered by Gazis ( r e f .  6) f o r  the vibrat ions of a 
th ick  cylinder.  Here, the r a t i o s  Ec/Es, pc/ps, and vc/vs were taken t o  be 
unity,  and a/t  w a s  assumed t o  be lo4.  With these values i t  w a s  expected 
t h a t  the roots  obtained from the frequency equation f o r  our composite cylinder 
would be very close t o  those given by Gazis f o r  a th ick  homogeneous cylinder.  
Other parameters assumed t o  correspond t o  those used by G a z i s  were: 

v C  - - vs = 0.30 , a/b = 3.0 , A = 1.885 , m = 2 

1.415 
_. 

The value A = 1.885 corresponds t o  the cylinder thickness t o  a x i a l  wave 
length r a t i o  of 0.2. Values of p/p,, where 

1.758 2.037 2.257 I _ _  

were obtained from the frequency equation and compared with those obtained 
from Gazis' curves as follows: 

1 p/pc I 
from frequency --- 

I equation I 

The f i r s t  frequency of 0.425 given by Gazis corresponds t o  a negative 
value of ka and, hence, i s  out of the range of case I. Since it w i l l  be 
obtained from case I1 or 111, i t  i s  not given i n  the comparison above. It 
can be seen t h a t  a l l  other roots  agree very c lose ly  t o  those given by G a z i s  
with a maximum e r r o r  of 1.375 percent. Similar agreement w a s  a l s o  found i n  
other cases considered f o r  comparison with G a z i s '  r e s u l t s .  

DISCUSSION 

For fixed values of the quant i t ies  vc,  vs  and the r a t i o s  pc/ps and 
a / t ,  f igures  2 t o  6 represent the var ia t ion  of the dimensionless frequency 
p/po f o r  d i f f e r e n t  values of A, m, and the radius r a t i o  a/b. Figures 2 t o  
4 show the var ia t ion  of p/po against  A f o r  m = 0, 1, and 2, respectively,  
and a/b = 2.0, whereas f igures  3, 5, and 6 show var ia t ion  of p/po against  
A f o r  a/b = 2, 1.5, and 2.5, respectively.  S t r a i g h t  l i n e s  p/po = A and 
0.3015 A a r e  drawn on each f igure  t o  ind ica te  the domains covered by the 
three cases. However, a l l  the curves a r e  p lo t ted  f o r  case I only. Therefore, 
curves a r e  stopped a t  the dividing l i n e  p/po = A. I n  some cases, curves 
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are stopped very close to the dividing line and are extended up to the 
dividing line by dotted lines. 

When m = 0 (fig. 2), the frequency equation degenerates into two 
separate equations, one corresponding to the axisymmetric vibrations (shown 
by solid lines) and the other to pure "torsional" vibrations (shown by dashed 
lines). Furthermore, when A is also equal to zero, the axisymmetric vibra- 
tion frequency equation degenerates further into two equations, one for simple 
radial vibrations and the other for simple axial shear vibrations. When both 
m and A are zero, we expect two of the frequencies to have zero values corre- 
sponding to a rigid body axial translation and rotation of the cylinder. 
Thus, the first two curves in figure 2 go to zero; the dotted curve is for 
torsional motion and the other is expected to be for predominantly 
longitudinal motion. 

Figures 3 and 4 show the variation of frequency with A for m = 1 and 
m = 2. It seem that for higher values of m the frequency variation with 
A is substantially decreased. From figures 3, 5, and 6, one can see the 
effect on the frequency of changing a/b. 
stages during the burning of the solid fuel. It can be seen that the charac- 
ter of the curves remains the same, however; the magnitude of the frequency 
decreases with increase in a/b ratio. This is as expected since the mass 
increases as a/b increases; however, the stiffness remains substantially the 
same as that of the shell. 

This change simulates the. different 

CONCLUDING REMARKS 

Analytical solutions were obtained to determine the natural frequencies 
and mode shapes of a thin cylindrical shell supported by a hollow core of a 
different material. The solutions, obtained by using three-dimensional elas- 
ticity theory for the core and bending theory for the shell, were in closed 
form. Roots of the transcendental frequency equation were obtained numeri- 
cally and &rves were plotted to show a typical variation of the frequency 
with variation in circumferential and axial wave numbers and in the ratio of 
inner to outer radii of the core. The solutions can be used to obtain the 
natural frequencies of cylinders with curved surfaces free from stresses and 
flat ends supported by diaphragms. They can a lso  be used to check frequencies 
obtained by approximate methods, such as finite elements, which, in turn, can 
be used to solve problems of complicated core geometries. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, May 4, 1967 
124 -08 -06 -01 -00 -21 



APPENDIX A 

SOLUTIONS FOR uc, vc, AND wc 

We shall now illustrate the procedure for  obtaining the solutions for 
displacements uc! vc, wc by considering case I in detail. For this case, 
the regular solution for E ( r )  of equation (7) becomes 

E ( r )  = -(1 - 2v)aclJm(kr) (m 
We shall write only the regular solutions since, for case I, the singular 

solutions can be obtained merely by replacing J by Y. Substituting equa- 
tion (AI-) into (9), we get 

- d2f + 1, df + (k12 - 5) f = clhJm(kr) 
dr2 r d r  

The general solution of this equation is given by 

Now from the definition of e 

Substituting equation (Ah) into (4c), we get 

a2w aW c + 3 c + -  
ar2 r ar r2 

Substituting for 
.get 

e, u, and w from equations (6a), (Al), (11), and ( A 3 ) ,  we 
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d2h - + - - +  3 dh (k12 - * - 1) h = c1 [e 
dr2 r dr r2 a 

+ a A d r  Jm(kr)] + 

Lett ing H = rh,  w e  can write the l e f t  s ide  

- d2H + - 1 - dH + (k12 - 5) 
dr2 r d r  

Equation (A6)  can then be solved f o r  H; hence, 

(1 - 2 ~ )  d h 1  h ( r )  = E = c1 a - Jm(kr) - c2 -- 
r P2P2 d r  a k12 

1. Jm(kr) - 2 ( 1  - 2v) 
r Jm(kr) 

c2 2 Jm(kr) (A61 ax 

of equation ( A 6 )  as 

H 

d m 
d r  - Jm(klr) + c3 Jm(klr) 

(A7 1 

Introducing equation ( l l b )  i n t o  (A4) one obtains 

Equations (A3),  ( A 6 ) ,  and (A8)  form three s e t s  of l i n e a r l y  independent solu- 
t ions  for f ,  g, and h i n  case I. Three more s e t s  a r e  obtained by replacing 
the Bessel functions of the  f i rs t  kind by those of the second kind. Simi- 
l a r l y ,  so lu t ions  for the o ther  two cases were also obtained. A l l  these solu- 
t i ons  a r e  summarized (within a mult ip l ica t ive  constant)  i n  equations (12) and 
(1-3) 9 
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Figure 1. - Cylinder geometry. 
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